Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Evans K. Miriti"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Modeling Identity Disclosure Risk Estimation Using Kenyan Situation
    (The African Journal of Information Systems, 2024-07-17) Peter N. Muturi; Andrew M. Kahonge; Christopher K. Chepken; Evans K. Miriti
    Identity disclosure risk is an essential consideration in data anonymization aimed at preserving privacy and utility. The risk is regionally dependent. Therefore, there is a need for a regional empirical approach in addition to a theoretical approach in modeling disclosure risk estimation. Reviewed literature pointed to three influencers of the risk. However, we did not find literature on the combined effects of the three influencers and their predictive power. To fill the gap, this study modeled the risk estimation predicated on the combined effect of the three predictors using the Kenyan situation. The study validated the model by conducting an actual re-identification quasi-experiment. The adversary’s analytical competence, distinguishing power of the anonymized datasets, and linkage mapping of the identified datasets are presented as the predictors of the risk estimation. For each predictor, manifest variables are presented. Our presented model extends previous models and is capable of producing a realistic risk estimation.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback